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il The Common Situation for the Disaster Risk Community
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1. EM-DAT Missingness and Biases




The Main Reason behind EM-DAT Missingness and Biases

EM-DAT records what it get from its sources

United Nations Agencies, World Bank

National governments, US, EU

Humanitarian agencies (e.g., IFRC)

Re-insurance companies (e.g., AON)

Press Agencies (e.g., AFP)

Study and characterize biases
Leverage more sources, data and
technologies

Engage in collective actions with partners
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Biases Are of Varying and Intertwined Types

Known Biases in Disaster Loss Databases (adapted from Gall et al., 2009)
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Time Bias: Technology and Initiatives Lead the Trend
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Hazard-Related and Accounting Biases
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Accounting Bias: Direct vs Indirect Mortality

EM-DAT tends to record direct losses (unless sources include indirect losses)

Hurricane Katrina (2005-08)
1,836 deaths (EM-DAT)

T

Comparison of average mortality rates hetween
January-June 2006 and January-June 2002-2003,
Times-Picayune death notices (New Orleans)
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(Stephens et al., 2007)
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Accounting & Geographic Bias y
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Systemic Bias: Administrative units

Example of Country-level map
Flood occurrence per country (2000-2022)

~ Admin units =
Biased perception ~

+ Poor and variable spatial resolution
Count
0-n10
10-28

+ Hard to estimate exposure,
28 - 57
vulnerability, ..., risk '57-1"

11-21




Systemic Bias: Extreme Temperature

The Guardian — 2021-07

Extreme temperatures kill 5 million
people a year with heat-related deaths
rising, study finds

More people died of cold than heat in past 20 years but climate
change is shifting the balance

O The sun rises over Melbourne on a scorching day. Deaths linked to hot temperatures are on t
rise, a global study has found. Photograph: David Crosling/AAP

he

The Numbers (zhao et al., 2021)

« 5.1 Million deaths/year associated

with sub-optimal temperatures

* 0.5 M death/year (heat-related)
« 4.6 M death/year (cold-related)

EM-DAT (2000-2022 average)

» 8,300 deaths/year for extreme

temperature events

« 7,600 death/year (heat wave)

* 600 death/year (cold wave)




Hazard-related & Geographic Bias: Heat Wave

Number of heat waves
in EM-DAT (2000-2022)

50% of heatwave events in 9 countries




Geographic Bias: Heat Wave - Health Scientific Research

Heatwave and health impact research: A global review (Campbell et al., 2018)
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Locations of heatwave and health impact research, 1964-2017.

https://doi.org/10.1016/j.healthplace.2018.08.017
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Heatwave = Silent Killer

No Mortality Data =» No Heat Wave Disaster

Percentage (%)
<25 25-49 MW 50-79 Il 80 -89 M 90 - 100 Data not available Not applicable

Civil registration coverage of cause of death (%), 2007-2016 (WHO, 2018).
See http://gamapserver.who.int/maplibrary/Files/Maps/Global CivilRegistrationDeaths 2007 2016.png
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2. Technological & Data
Opportunities

2.1 Using Geographical Data
2.2 Using Online Media
2.3 Using other Communication Systems




1973 Mississipi floods captured by ERTS-1 (Landsat 1)

ERTS-1/ Landsat 1
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Figure 2 (left). On March 31 and May 45, 1973, ERTS-1 imaged the lower Mississippi River Valley in
a total time of about seven minutes. This mosaic of band 7 near-infrared images provided the first
overall view of flooding for the entire region.
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Figure 2 (right). The ERTS flood data were compared with the band 7 near-infrared images used to g g
construct this mosaic depicting “normal’ conditions along the Mississippi Valley between St. Louis "~ i

and the mouth of the Arkansas River on October 1-2, 1972.

Deutsch and Ruggles (1974). https://doi.org/10.1111/].1752-1688.1974.tb00622 ..
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28 Twenty years of MODIS Imagery

MODIS MODIS Near Real Time Global Flood Product
Floods

Pakistan 2022 Gt I8 EARTHDATA

OPEM ACCESS FOR OPEN SCIENCE * 8

Automated Water Detection Algorithm
« 1-2-3 days mapping product
~250m of resolution

Source: NASA MODIS = Moderate Resolution Imaging Spectroradiometer
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Google Earth Engine
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MODIS = Moderate Resolution Imaging Spectroradiometer

From Telmann et al (2021): htips://doi.org/10.1038/s41586-021-03695-w.

See website: https://global-flood-database.cloudtostreet.ai/
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From Hazard to Exposure/Vulnerability with POPGRID

POPG ‘ 2 I D WorldPoP dataset
1km Population Density (Example for Belgium )

A

DATA COLLABORATIVE

A Data Collaborative for Settlement,
Infrastructure, and Population Data

Hazard footprint x POPGRID = Hazard Exposure

WorldPop (worldpop.org)

= High resolution population
density
= Disaggregated (e.g., age, sex)

= Updated yearly since 2000




Excess Mortality Data: Disaster Detection & Mortality Impact

Example for Belgium g s
Source: ;
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Weather data anytime, anywhere!

ZW \\Veather-related Disasters Detection and Mapping with Reanalyses
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National Center of Environmental
Prediction (NCEP) reanalysis

https://earth.nullschool.net/
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ZW \\Veather-related Disasters Detection and Mapping with Reanalyses

i ERA-I (HWMI) b NCEP-2 (HWMI) 5 ERA-I (WSDI)

NCEP-2 vs ERA-Interim
From Russo et al. (2014),
https://doi.org/10.1002/2014JD022098

1980-1990

3 periods:

- 1980-1990
- 1991-2001
- 2002-2012

1991-2001

Heat Wave Magnitude Index

Warm Spell Duration Index
2003: >70,000 deaths
2010: >55,000 deaths

2002-2012

I I I I I I 5 6 7 15
Heatwave scale heatwave duration (n. of sub—HW)
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Heat waves:. ERA-5 reanalysis vs EM-DAT (Belgium)

Average 2m temperature anomaly for 25-29 June 2019
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ERA-5 Reanalyses

= Many meteorological variables
= 1950 to present

= upto 0.1°x0.1°

Maximum ERAS daily max. temp. (°C)

Periods = 3 consecutive days ...

> the 99" percentile ...

of the daily T, ---

of the May-Sep season of the control period (1971-2000)*

*Definition from Jacob et al (2014), https://doi.org/10.1007/s10113-013-0499-2
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Online Media: Detecting & Mapping Disasters with y

- Since 2005
- Easy query with hashtags and

Twitter API

- Some tweets are geolocated

2

Vivek Bajpai €& @vivekbajpai84 - 15 juil. 2021
Dangerous video of Floods from Belgium: Four bodies recovered in Verviers

after a house collapsed
#Flood #flooding #Belgium #Video

N T

Empact News @EmpactNews - 20 févr.
At least 26 people have died in Chile following wildfires that have swept
across the country during excessive heatwaves.

#chile #chilenews #chilean #wildfires #fires #heatwave

#climatechange #climatecrisis #firefighters

Q 3.2 Q 3 ihi 196
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Detecting & Mapping Floods with Twitter y

Leaflet | Powered by Esri | DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP,

Global Flood Monitor*
Event detection based on

Hashtag in multiple languages

Tweet temporal anomaly

at a location

(No impact extraction)
Belgium & Germany

July 2021 https://www.globalfloodmonitor.org/

‘ ‘ ‘I Iwm Institute for VU ? _
Environmental Studies Munlch RE =

*de Bruijn et al. (2019): hitps://doi.org/10.1038/s41597-019-0326-9
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>3 Event Detection Based on News (GDELT): Diseases

The GDELT Project Global

Translation

) [ —— Database of Events,

Model training
& validation

Recurrent

Language, and Tone

Filter by GDELT
disease tags
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Filter by disease
keywords in title

Linear
Classifiers NS N <
Networks \ Information P e
Filter by Cluster by extraction D
predictions made ‘ disease and ‘ through * A:::;:ye
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S
Figure 1. The modules of our event-based surveillance system. G D E LT m 0 n ItO I’S th e WO rl d IS n eWS
s Global

Feldman et al. (2019)

media from nearly every corner of
#  Pre-classified by tags every country in print, broadcast,
, Since 1979 and web formats, in over 100
languages, every moment of every
X No automated impact data day.

extraction GO gle


https://doi.org/10.1093/jamia/ocz112
https://www.gdeltproject.org/

el Communication Systems: Use Data From Early Warning Systems

Example: Global Disaster Alert and Coordination System (GDACS)

Flood and Drought Example: Nigeria Flood 2022

Orange and Red alerts in 2022 o
S H” Overall Red alert Flood for Nigeria

= in Nigeria
. = .‘ . -'::-..’._""' :'
p N . Summary Impact Maps & Reports Media Resources Covid19
LB “ 4
a$ o Event summary GDACS Score
_— m f\ P Flood Nigeria can have a high humanitarian impact based on the
| ol iy magnitude, exposed population and vulnerability.
*!’I 4 m I* i 'y
| . ' GDACS ID FL 1101659 o 1 2 3
| E‘..u | 1 * et »I
: T Glide number: FL-2022-000350-NGA
e M For more info on GDACS alert score click here.
Death: 605
Displaced: 1306000
Countries: Nigeria
https://www.qgdacs.org/ From-To 10 Sep - 26 Oct

Analytical products
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el Communication Systems: Application Programming Interfaces (APIs)

Protocoled demand & response

Server
{

disaster id: 123456,
2023-03-22,

date:
% type: earthquake,

Disaster data,

@ please!

Data sharing and processing can be automated!
- From EM-DAT Data Source: Many API already exists (Free or Private)

= To EM-DAT Users: EM-DAT API is under development

internal
displacement
monitoring
centre



- Key points

l'j Various ways to deal with missingness

?2 Various kind of disaster loss biases

Many technological and data opportunities

& Geographical data
e Online media

- communication systems

Yet, too much!

Yet, many more!
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